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Abstract—The growing prevalence of graphs representations in
our society has led to a corresponding rise in the publishing of
graphs by researchers and organizations. To protect the privacy,
it is important to ensure that graphs including sensitive data are
not disclosed. Since the weight of edges could be utilized to infer
confidential information, the graph should be privately published
to avoid ethical and legal issues. In this paper, we propose a novel
method for privately publishing shortest paths while preserving the
privacy of sensitive edge weights in graph. Specifically, we divide the
edge weights into internal and external edges based on their edge
betweenness centrality. Then, we give two different differentially
private algorithms to perturb edge weights based on the distinction
between internal and external edges, respectively. To reduce the
error ratios between differentially private shortest paths and real
shortest paths, we employ edge betweenness centrality to search for
the shortest path, which is closest to the true one. Our experimental
results show that our mechanisms can effectively reduce the error in
the average shortest path distance by 1.1% for large graphs, while
for the shortest path change rate, our mechanisms can reduce it
by 8.3%.

Index Terms—Differential privacy, graph theory, randomized
response, shortest path.

1. INTRODUCTION

HE graph is an abstract structure that provides a visual
T representation of entities, enabling a more comprehensive
comprehension of their relationships. It is composed of vertices
that represent entities (e.g., individuals or organizations), and
edges that represent directed or undirected associations between
vertices. In addition to the structural relationships between ver-
tices, the graph also contains attributes that describe vertices
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and weights that describe edges. The graph structure can be
used to represent a variety of data, including social graphs,
knowledge graphs, road graphs, and more. Mining information
from graphs is an extensive area of research, including path
scheduling, community detection, pattern matching, and others.
While this potent tool facilitates a deeper understanding of
intricate relationships and supports informed decision-making,
it inevitably raises concerns regarding privacy breaches.

With the growing awareness of privacy concerns, privacy-
preserving is getting increasingly critical. The privacy-
preserving can refer to user identity protection or untraceabil-
ity [11, [2], [3], [4], [5]. However, in the context of both graph
data analysis and graph data publishing, the privacy-preserving
generally refers to preventing sensitive information from leak-
ing since attributes, weights, and even structural information
can be sensitive and may raise ethical or legal issues if un-
intentionally exposed. To safeguard the privacy of individuals
within a social graph, early studies employed techniques such
as de-identification [6] or using k-anonymity [7]. Nevertheless,
these traditional anonymization methods are based on the as-
sumption that potential adversaries possess limited background
knowledge and are unable to effectively counter increasingly
powerful attacks [8]. Given the vulnerabilities of traditional
anonymization techniques that hinder data analysis and publica-
tion, researchers are actively pursuing research and development
efforts to identify effective ways to protect privacy and mitigate
the risk of privacy breaches.

Differential privacy is a popular privacy-preserving standard
that has won the favor of researchers because of its strict mathe-
matical definition and robust privacy measure. Its core concept
revolves around minimizing the impact of input variations on
output outcomes by introducing randomness. Differential pri-
vacy has many desirable properties, including: (1) maximum
background knowledge assumption: it assumes that the attacker
knows all the records except the target one; (2) privacy mech-
anism synthesis: simple differential privacy mechanisms can
be combined into complex differential privacy mechanisms;
and (3) privacy loss quantification: a specific quantification of
the privacy-preserving capability of the mechanism. With these
advantages, differential privacy has found applications in major
tech companies such as Microsoft [9], Google [10], and Ap-
ple [11] for the collection of telemetry data while safeguarding
individual privacy.

Differential privacy in the context of graphs can be categorized
into two primary domains: node differential privacy and edge
differential privacy [12]. Node differential privacy is concerned
with reducing the impact on the output of modifying (adding
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or removing) a node and its associated edges. In contrast, edge
differential privacy aims to reduce the impact on the output when
certain edges are altered. There are numerous implementations
of edge differential privacy, such as estimating the cost of a mini-
mum spanning tree [ 13], counting subgraphs [14], publishing al-
gebraic connectivity [15]. And in node differential privacy, there
are estimating degree distribution [16], discovering frequent
graph patterns [17], and fitting a high-dimensional statistical
model to a sparse network [18].

The shortest path is commonly employed in graph analysis,
with applications ranging from path scheduling in traffic graphs
to friend matching and betweenness centrality calculation in
social graphs. For clarity, we use the term ’shortest path’ to
refer to the sequence of vertices traversed by the shortest path
and ’distance’ to denote the sum of weights associated with the
edges traversed by the shortest path. Based on edge differential
privacy, Sealfon [19] first proposed the weight private graph
model that the structure is public but weights are private which
was applied to a single shortest path and all-pairs distances
privately release. Intuitively, the weight private graph model is a
sensible assumption that aligns well with real-world scenarios,
like road graphs where the landmarks are visible to all visitors,
but traffic conditions reported by vehicles might be sensitive
due to the location information contained. Another example is
social graphs, where the weights may represent the degree of
trust between individuals, which should preserve privacy, but
it is difficult to conceal friendships. Therefore, an adversary
with either internal or external access to the graph, such as
someone who can only access a published graph, can easily
obtain the graph topology. Subsequent research on shortest path
and distance publishing based on differential privacy has largely
adopted this model [20], [21], [22].

Motivation: While the author in [19] has proposed several al-
gorithms for privately releasing all-pairs shortest path distances
and shortest paths between pairs of vertices, accompanied by rig-
orous theoretical analyses, certain research gaps remain. (1) The
proposed algorithms belong to central differential privacy that
needs a trusted center to respond to shortest path and distance
queries, which lacks the desired flexibility. (2) The assumption
of adjacent objects, namely neighboring weight functions which
differ by at most 1 may not be enough to fully protect the
privacy of the weights. For example, if the range of weights
is a finite set of natural numbers, the range of candidate weights
guessed by the adversary can be very small. (3) This work
primarily focuses on how to reduce the approximate distance
errors and ignores the change of shortest paths. For instance, the
released approximate shortest path may be slightly or completely
different from the true shortest path. In practical scenarios such
as navigation, obtaining the approximate shortest path may not
suffice; knowledge of the true shortest path may be essential.

Problem definition: Our objective is to develop an algorithm
capable of privately publishing shortest paths while preserving
the privacy of edge weights and minimizing the alteration of
these paths. Following the weight-private graph model, we de-
part from the approach taken in [ 19] and opt to release a synthetic
graph that accommodates arbitrary shortest path queries. In
pursuit of robust privacy protection, we consider the worst-case

scenario: adjacent graphs differ in an edge weight by at most
b — a, where a and b are the minimum and maximum weights
within the graph, respectively. However, this setting of adjacent
graphs can introduce significant distortions to the true shortest
paths, resulting from the injection of large-scale noises into
the weights. Consequently, our challenge lies in enhancing the
utility of the shortest paths while avoiding potential privacy
breaches.

In this paper, we focus on accurately publishing shortest paths
while preserving the privacy of edge weights. As previously
mentioned, we seek to achieve this through the use of differ-
ential privacy, as traditional privacy-preserving techniques have
proven less effective as deterrents. Based on edge differential
privacy, we divide edges into two distinct groups: no shortest
paths passed through and some shortest paths passed through.
To mitigate errors, we apply different perturbation techniques
to each of these groups. Furthermore, in our quest to further
reduce errors, we explore the application of edge betweenness
centrality as a means to filter out undesirable shortest paths,
ultimately selecting optimal approximate shortest paths.

The contributions are listed as follows.

® We give a method for dividing edges based edge between-

ness centrality and prove that the core edge does not exist
for all-pairs shortest paths.

® We design two differentially private algorithms to protect

weights in graphs which have lower errors in shortest path
and distances.

® We propose an novel algorithm based on cumulative mul-

tiplication of edge between centrality to improve the utility
of the outputs of differentially private algorithms.

The remainder of this paper is organized as follows. Section II
provides an overview of related work, both with and without the
incorporation of differential privacy. Section III introduces the
theoretical foundations relevant to the algorithms developed in
this study. Section IV details the specific algorithm we have
designed. Section V presents the experimental results and anal-
ysis of our algorithm. Section VI discusses the limitations and
potential threats to our study. Finally, Section VII offers a concise
summary of this paper and outlines potential avenues for future
research.

II. RELATED WORK

In the scenario of privately publishing shortest paths, there are
three basic method types: (1) traditional anonymity techniques
based methods, such as using k-anonymity or noise to hide sen-
sitive information; (2) cryptography based methods that using
homomorphic encryption or others; and (3) differential privacy
based methods.

Based on traditional anonymity techniques. Liu et al. [23]
provided a greedy perturbation algorithm to reduce the negative
effect of distorted weights on the shortest paths. But it has a huge
computational overhead since the algorithm needs to travel all
the edges and has to compute the all-pairs shortest paths for each
edge traversal. Another related work is that Wang et al. [24]
proposed using k-anonymity to ensure that there are at least
k-indistinguishable shortest paths from source to target but it
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just focuses on the privacy of shortest path. Wang et al. [25]
also combined node degree and k-anonymity to improve their
discovery of at least k-indistinguishable shortest paths between
the source and target nodes with the same degree. The solution
prevents the attacker from having background knowledge about
the degree of nodes.

Based on cryptography. Some researchers focused on cryp-
tography based shortest paths computing or query. Wu et al. [26]
proposed an efficient privacy-preserving shortest paths comput-
ing method that focuses on sparse graph in real-time navigation
by compressing the next-hop routing matrices in road map.
Ramezanian et al. [27] extended Floyd Warshall algorithm to
output a all-pairs shortest paths related matrix, which can be
used to query shortest paths by private information retrieval
(PIR) techniques. However, this solution applies homomorphic
encryption based PIR, which results in heavy overheads in
computation and query. The same issue exists in [28].

Based on differential privacy. There are currently only a few
works on differential privacy-preserving the shortest path pub-
lishing. Sealfon [19] first formally proposed the implementation
of how to privately publish all-pairs shortest path distances,
demonstrating an additional error of approximate distance at
most O(nlogn/e). Sealfon also left an open question: Whether
can privately release all-pairs distances with error sublinear in
n. Therefore, [20], [21], [22], [29] proposed their solutions
based on the open question. Ghazi et al. [20] published all-pairs
shortest path distances with upper error O(n?/3/¢) and lower
error Q(n'/%) in pure differential privacy that need to bridge the
gap between the two errors. Fan et al. [29] proposed two methods
on the tree and grid graph with error O(log!® n) and O(n?/*),
respectively. And to give a solution for general graphs, Fan
et al. [22] proposed a method that can answer all-pairs shortest
path distances with error O(nl/ 2) via constructing a synthetic
graph in approximate differential privacy. Chen et al. [21] im-
proved the error to about n(V17=3)/2+0(1) in pure differential
privacy if weights are bounded.

However, the above differential privacy based studies almost
always only concentrate on the distance and overlook the change
in the shortest path. Our motivation drives us to study the change
of shortest paths with large weights perturbations, which is the
first work to study the change of shortest paths in differential
privacy.

III. PRELIMINARIES

We consider a simple, undricted, and bounded-weight graph
G = (V,E,W), where V is a set of vertices(i.e., landmarks in a
traffic graph, users in a social graph, etc), F is a set of edges and
W is the set of weights associated with edges. Let n € N be the
total number of vertices in V, then V' = {v1, ..., v, }. Fori,j <
n, e; ; represents the relationship of v; and v, namely, e; ; € E,
w; ; € W, respectively. We may as well assume that the weights
are integers and are constrained to [a, b] where a and b are the
minimum and maximum weights in the graph, respectively. Note
that here both a, b > 0. For graphs with negative weights, we can
simply add a constant to all weights to make them satisfy the
above condition.
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A. Differential Privacy

The formal mathematical definition of differential privacy was
initially introduced by Dwork [30]. The main idea is to limit the
impact of changes in the input data on the output results that
mask the contribution of any individual in the database. Driven
by our motivations, we provide a variant version of the original
differential privacy model.

Definition II.1: For any two graphs G and G’, where G =
(V,E,W) and G' = (V, E,W’), we say they are adjacent if
there exists only at most one weight difference:

W =W, = Z \wij —wj ;| = |wi; —wi;| <k (1)

e ;€E

where k = b — a. We denote G ~ G'.

The concept of this "adjacent’ relationship bears similarities to
the notion found in edge differential privacy, as both concentrate
on the alteration of individual edges. However, in the context of
the graph model, our primary concern lies in the finer-grained
details of edge weights, rather than the mere structural presence
of a specific edge.

Definition II11.2: Assume there is arandomized algorithm that
M : G — O, where G is the universe of our bounded-weight
graphs. Consider any two graphs G, G’ € G, M satisfies ¢-
differential privacy if G ~ G’, and for all outputs O € O, have:

PrM(G) € O] < exp(e) Pr[M(G)) € 0] (2

The above definition is symmetric, allowing for the inter-
change of the positions of G and G’. This formula describes
the similarity between the probability distributions of output O
under e€. Here, € is referred to as the privacy budget. A small
€ provides a robust privacy guarantee, which diminishes as e
increases. Extremely, with ¢ = 0, maximum randomness is en-
forced, effectively reducing the impact of the G ~ G’ approach
to zero and resulting in the destruction of data utility.

Theorem II1.1: Suppose M, satisfies ¢;-differential privacy.
Let domain G be divided into n disjoint subsets G; where i € [n].
Then the set {M1(G1), ..., M, (G,)} provides max;c,{€; }-
differential privacy. This is a parallel composition property of
differential privacy [31].

Definition I11.3: Let f : G — Z™ be any query function. The
classic differential privacy mechanism called Laplace mecha-
nism can be defined as:

M(G) = f(G) + (Y1,..., Ym) (©)
where the Y; is an independent Laplace random variable drawn
from the Laplace distribution with mean O and scale parameters
b = Af/e, which is defined as:

1
Lap(z|b) = 25 6P <—|?j|> 4)
And sensitivity A f:
Af = mas [7(G) ~ £ (@), )
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B. Randomized Response

Randomized response was initially introduced by Warner
etal. [32] to achieve plausible deniability when answering binary
alphabets. Assume a research is being conducted involving the
collection of sensitive attributes « € {0, 1}. Volunteers are eager
to participate but hesitant to reveal their personal information,
as indicated by the symbol x;. Consequently, volunteers flip a
biased coin, honestly answer x; with probability p, and deny with
probability 1 — p. The aforementioned randomized response
mechanism is straightforward and optimal across all privacy
levels; however, it is limited to binary attributes. Kairouz et al.
in [33] extended this mechanism to a more general form suitable
for handling attributes with multiple values.

Definition I11.4: Suppose the attribute univese X’ is discrete
and bounded. For any x; € X, the response y; € X satisfies:

T; W'p'7|)(|—€1€+ea
Yi=19 X1 - (©)
Ty WP R irer

where 2, is a discrete uniform random variable from X'\ {z;} so
that y; has the probability of responsing any attribute in X'. The
sum of probabilities is 1.

This definition implies that the response y; has a higher
probability of representing the true sensitive attribute x; when
€ > 0, while having an equal probability of representing any
other attribute in the set X'\{z;}. To eliminate any potential
ambiguity, it is important to emphasize that the subsequent
discussion of randomized response pertains to the multi-alphabet
version.

C. Betweenness Centrality

In graph theory, the betweenness centrality is an important
measure of centrality, which is given by the shortest paths. The
number of shortest paths that passed through the vertex divided
by the total number of shortest paths yields the node betweenness
centrality. It is the degree of interaction between the current
node and others. Accordingly, edge betweenness centrality has
a similar definition to the above one, but the numerator is the
number of shortest paths passed through the edge.

Definition 111.5: The edge betweenness centrality of edge
€;,5 1s defined as follow:

Ts,tle;
Oplesg) = Y, — ™
s,teV 8t
s#t

where o, ; is the number of shortest paths from source s to target
t, and o 4, ; is the number of shortest paths from s to ¢ and
passed through edge e; ;.

IV. OUR MECHANISM
In this section, we will introduce the mechanisms for privately
publishing the graph while minimizing errors in approximating
shortest paths and distances.

A. Publish Graph

Our goal is to perturb all the weights in the graph and make
it satisfy e-differential privacy. Intuitively, a solution is to add
Laplace noise, which is calibrated by Af. Liu et al. [23] em-
ploys a similar strategy with Gaussian noise. However, using
noise directly will obviously change a significant portion of the
shortest paths from source to target.

LemmalV.1: Leta = 0,and f be a query function that returns
the shortest paths between two vertices, the Laplace mechanism
will distort shortest paths with approximate probability at least
1 — (1 — e~ %)! where [ is the shortest path length.

For small € and large [, there is a high probability that the
shortest path deviates from the original state.

Inspired by the edge partition approach outlined in [23], edges
can be categorized into three distinct groups based on their
interaction with shortest paths: those through which all shortest
paths pass, those through which no shortest paths pass, and those
through which some but not all shortest paths pass. Intuitively,
when we increase the weights of edges through which no shortest
paths pass, the shortest path and the associated distance remain
unchanged.

Consequently, we can perturb edges separately rather than
introducing noise on a uniform scale. For the sake of simplicity,
in the context of publishing all-pairs shortest paths, we will
reclassify the edge types and provide a proof demonstrating that
no edge is traversed by all shortest paths.

Definition IV.1: Given an edge e; ;, we call it the core edge
if all the shortest paths p,, ,, pass through it for any source and
target vertex pair (u,v)in G.

Definition IV.2: 1f there is no shortest path p,, , that passes
through an edge e; ; for any source and target vertex pair (u, v)
in G, we call it an external edge.

Definition 1V.3: If there is at least one shortest path p,, ,, that
passes through an edge e; ; for any source and target vertex pair
(u,v) in G, we call it an internal edge.

Theorem IV.2: In a connected graph with degree no less than
3, there is no core edge for all-pairs shortest paths.

Proof: Suppose G is a connected and undirected graph and
has a core edge e, between s and ¢. Let u be a neighboring
vertex of s different from ¢. Then the shortest path p,, ; must be:
p1(u — ... = t)+e. s and distance d,, s isequal to d,, ; + ws 4,
we have:

du s =

)

du,t + wt,s

= Wt,s + Z Wi, 5 < Wy, s (8)

€i,jEP1

Because d,,; < wy, s + Ws,q, if there is no other paths from u to
t, p1 must be the shortest path p,, ;. But in order to pass through
core edge e, ;, there must exist other paths which contain p,, ;.
Therefore, there must be a path from u to s, denoted as p where
Put =p2(u— ... = 5) +es¢. Let v be a vertex which is in
path p- and is a neighboring vertex of s. Then ps is:u — ... —
v — s and we have:

dyyp = Wep + Z wjj &)

€i,jEP2
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Algorithm 1: Publish Graph With Positive and Negative
Noise.

Input: G = (V,E, W), €1,€e2, Af

Output: G

1: calculate edge betweenness centrality B
2: for b; ; in B do

3 if (b@j = 0) then

4 ’UA}i_’j :wi‘,j +Lap+(%)

5 else

6: UA)Z"j = Wj j; + Lap‘(%)

7 end if

8 Wi, j < ”LZJZ‘,]‘

9: end for

10: return G ,B

Similarly, for shortest path p,, s, there must be a path ps where
Pus =p3(v — ... = t) + e 5, and we have:

dv,t < w'u,s + ws,t (10)

However, this will cause py + €4 4:u — ... — v — s — tisnot
the shortest path from « to ¢, and p,, s should be: py — ¢, s + ps,
namely: u — ... = v — ... — t which not passes e, ;. This is
a paradox. Therefore the theorem holds. ]

The external edges are irrelevant to all shortest paths. To
meet the e-differential privacy requirement, we would like to
add positive noise to reduce the distortion of shortest paths. If
the weights of internal edges are reduced, this perturbation can
ensure that external edges cannot be transformed into internal
edges.

Intuitively, unlike adding Laplace noises to all edges in edge
differential privacy, we would like to add positive Laplace
noises to external edges and negative ones to internal edges,
respectively.

With the above definitions and theorems, we now have an
intuitive way to publish a whole graph G. Algorithm 1 describes
our first solution.

The four input parameters, namely the target graph G, two
different privacy budgets €1, € and sensitivity A f. The First step
is to calculate edge betweenness centrality B. For every edge,
we add positive Laplace noise which is drawn from Laplace
distribution to its weight by filtering the negative noise if there
is no short path passed through(namely, b; ; is zero). Otherwise,
we add negative Laplace noise. After processing all edges in G,
we privately publish G.

Lemma IV.3: Algorithm 1 satisfies max{e;, e }-differential
privacy.

Proof: Let f:G — O where O € Z™ be an arbitrary
weight-dependent query function on a graph G with output that
can be decomposed into a sequence of weights, namely O =
{01,09,...,0m}. Since the shortest paths only pass through
the internal edges, we only need to consider the weights with
negative noise if f is a shortest path query function.

Genenally, we can dividle O into two parts:
{01, 09, ..
02 = {0111, 0142, ..

0, =
.,o1} if corresponding edgs are internal edges and
., Om } if corresponding edges are external
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(1,3):1-3
14 uer 2
4 18 query (14):1-41-3-4
(23):2-1-3
e o (24):2-51-542-51-3-4
10 (G434

Gy

Fig. 1. An example of querying all-pairs shortest paths.

edges, respectively. For internal edges, we have:
0;— G i

[T o (2teg02)
0 — G’ 7

Hi:1 eXp (El( Aff( : ))

e ( (01 = J(G)i) — ((0: - G')»))

PTg(Ol) _
P?“Gr(Ol)

Af
l
_ a1 (f(G)i = f(G)a)
~Ifew ( ey
- <€1||f(G’) - f(G)||1>
< Af
< exp(e1) (11)
For external edges, we have:
Pro(0s) Tl exp (-2l @)
Pro(0a) [z, o (2o 000)
1 e2 (0= J(G')i) ~ (0~ [(G):) )
= exp (
1L y
2 2 (f(G)i — f(G/)i)>
= exp <
1L 57
< exp(e2) (12)

Because O; and Og are outputs of two mutually disjoint
datasets, Algorithm 1 satisfies max{ey, eo }-differential privacy
based on the parallel composition. ]

With the assurance of differential privacy, we can confidently
publish the graph for shortest path queries while maintaining
the privacy of edge weights. While knowledgeable adversaries
may discern the edge types using B and potentially deduce the
added noise type for each edge, our privacy-preserving measures
remain effective, primarily due to our well-defined concept of
adjacent graphs.

B. Comparison

In this subsection, we will use a concrete distance to demon-
strate our first solution. As shown in Fig. 1, the left part of G is
a connected, undirected, and weighted graph, and the right part
is query results. Note that for vertex pairs (1,4) and (2,4), they
both have the two shortest paths that have the same distance.
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G 3-4 a 1,2):1-2
(1,3):1-3
413 query (1L4):1— 41354
456 18> (23):2>1-3
° ° 24):2-1-42-1-53-42-4
e (34):3-4
Gy
Fig. 2. Adding Laplace noise.
G 352 e (1,2):1 -2
(13):1-3
4-12 query 14):1 541354
4-1 18/~ 20 (23)2-1-3
° ° (24)2->1-42-51-3->4
=S (34):3 > 4
Gs

Fig. 3. Adding positive and negative Laplace noise.

Fig. 2 is the result of adding standard Laplace noises to the
graph. For the sake of simplicity, we assume here that all noise
values are integers (just a hypothesis). These noises are random,
thus making some weights larger and some weights smaller. The
shortest paths of G5 have changed in Fig. 2, the vertex pair (1,4)
has lost one shortest path 1 — 4, and the vertex pair (2,4) has lost
two shortest paths {2 -1 — 4,2 — 1 — 3 — 4}, but added a
new shortest path {2 — 4}. In Fig. 3, however, we add positive
and negative Laplace noises.

As shown in Fig. 3, it is not hard to find that the edges
{e1,2,€1,4,€1,3,e3,4} are internal edges, but es 4 is an external
edge. Therefore, only the weight of e5 4 is increased. In this case,
the shortest paths of vertex pairs (1,4) and (2,4) are still changed.
(1,4) lost the shortest path as well {1 — 4}, while (2,4) only lost
{2 —=1—4}.

The shortest paths change rate is 3/8 when compared to G
(we only calculate how many shortest paths there are in G but
not in Gz). And the shortest paths change rate of G5 is 2/8,
which is lower than 5. This example shows the core idea of
our solution, which is to perturb the weights without affecting
external edges.

C. Post-Processing

An important property of differential privacy is that its post-
processing does not reveal any privacy information about the
original dataset. And sometimes, proper post-processing helps
to improve the utility.

In our case, if all weights in graph G are discrete and bounded,
the weight w; ; may deviate from the original domain after
adding noise. For example, if the weights domain is [1,2,...,21],
the noise-added weights may be in [—11.1,. . ., 32.11]. Note that
although Laplace noises are continuous, we will constrain them
to a fixed precision, which is what researchers do by default in
practice.

Back to our solution, there should be a post-processing step
to round the noise weights to the origin domain. Otherwise, the
fractional part will reveal the noise itself and give the adversary

Algorithm 2: Post-Processing.

Input: G, weight range|a, ]
Output: G’
for 1, ; in G do
if UA)Z'J' > b then

wi_’j < Wj, 5

0: end for
1:

1

2

3

4

5:

6: else
7

8

9

1

1 return 7/

more confidence to infer the hidden weights, while the utility of
the data will be reduced.

For out-of-bounds values, we reassign them to the nearest
boundary. And for values within the bounds, we do not use nor-
mal rounding, but use random rounding. As shown in Algorithm
2, rr is a random rounding function that rounding our weights
w;; to integer form. Random rounding means rounding up a
value with the probability of its fractional part. For example, for
a value 6.6, with the probability 0.6 and 0.4, rr(6.6) = 7 and
r7(6.6) = 6, respectively.

Lemma 1V.4: Random rounding will not introduce a addi-
tional error.

Proof: X; = a; + b; is a random variable, a; and b; are the
integer and fractional part, respectively. Let X; denotes the
results of X; after random rounding, and we have:

) {ai +1 wp. b (13)

Because the expectation of random rounding is unbiased, there
is no additional error. |

Therefore, to avoid introduce addtional error, we prefer to use
random rounding as the post-processing if the graph is discrete
but adding continuous noise.

D. Specific Solution

For the graph with bounded and discrete weights, the contin-
uous noise destroys its discrete property.

Inpractice, it is better to avoid introducing operations that may
introduce additional errors when designing a privacy-preserving
mechanism.

Therefore, we apply the random response mechanism to
graphs with both bounded and discrete weights. In most scenar-
ios where this mechanism is applied, there is no central server
that aggregates data. The above is called local differential pri-
vacy, which differs from our centralized model. In fact, random
responses are equally applicable to our centralized model and
can avoid additional errors.
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Algorithm 3: Publish Graph With Randomized Response.

Algorithm 4: Correct Shortest Path.

Input: G = (V, E, W), €1, €2,w € [a,b]
Output: G

1: calculate edge betweenness centrality B

2: for b; ; in B do

3 if (b; ; = 0) then

4: Wi = w;j + Lap*(%f)

5: else

6 let o be a continuous uniform random variable in
range (a, b + 2|

7: if (v € (a+i,a+ i+ 1] where i €
[0,1,...,b—a — 1]) then

8: UA)z"j =a+ ’L

9: else

10: UA)iJ = Wi,j

11: end if

12: end if

13:  end for

14:  return 3

The main difference between Algorithms 1 and 3 is that the lat-
ter replaces adding negative noises with a randomized response
mechanism. There is a random choice involved in whether
weight w; ; remains constant with the probability % or
is assigned to any of the elements in [a, b] with the probability
m'

We use a continuous uniform random variable « to demon-
strate how to implement random choice. For i € [0,1,...,b —
a—1], a € (a+1i,a+1i+ 1) with probability ;—1—= and
a > b with probability b—srew .

Lemma IV.5: Algorithm 3 satisfies max{ey, €3 }-differential
privacy.

Proof: Similarly, the query function f on edges with b; ; = 0
satisfy e -differential privacy.

For query function f’ on edges with b; ; > 0, let w and w’ be
records in G and G’, respectively. G and G’ are differ in the ith
record. Let O € R™ be any output, i.e., O = {01,09,...,0m},
and we have:

IA
=
Qo
w
PR
~
s
&
~_

5)

Input: CAJ’ZB, t, vertex pair (u, v)
Output: P, ,
ﬁu,v + shortest paths of (u,v) in G
ﬁﬁ,v <+ top ¢ simple shortest paths of (u,v) in G’
for in P, , do
B=1l.,,epbi
end for
P}, , « P}, in descending order of 3
P, ,  first|P,,,| paths in P!,
return P/

u,v

S AR A s ey

Similarly, because f and f’ are applied to disjoint datasets,
Algorithm 3 satisfies max{e, eo }-differential privacy based on
the sequential composition. |

As a result of the preceding Algorithm 3, we can conceal the
true weights w; ; while always restricting them to the discrete
domain without rounding.

E. Find Paths

Inpractical applications, we are very concerned about whether
the approximate shortest path which is from differentially private
graph G will change or not. For example, in vehicle navigation,
even if we perturb the weights between related landmarks, the
user can still achieve correct navigation based on the correct
approximate shortest path with the lowest cost. Reducing the
error between the approximate shortest path and the true shortest
path can effectively improve the utility of the perturbed data.
The work described in [23] used greedy thoughts to constantly
measure the impact on the shortest paths after perturbing the
weights. But it will compute the shortest paths multiple times,
which causes a great overhead. To avoid wasting resources,
we consider reusing the intermediate variables of our proposed
algorithms.

In this section, we give a method to assist in finding the
correct shortest paths. With the A f up to b — a, the output G
of Algorithms 1 and 3 suffers such a great disturbance that it is
hard to find the true shortest paths. As we have stated before,
we prefer to protect every weight but publish the relationship
(topological structure). Therefore, we develop the Algorithm 4.

There are four input parameters in Algorithm 4, the privacy-
preserving graph el edge betweenness centrality B, path num-
bers t, and source and target vertex pair (u,v). Fortunately,
because B is an intermediate result of Algorithm 1 and 3, there
is no additional overhead to obtain it. The output is then p,, ,,
which is an approximation of the shortest path from source u to
target v.

The first step is to obtain the shortest paths from u to v, denoted
by 751“1. The second is to identify the top ¢ shortest paths of
(u,v), denoted by 755,,,. In this paper, we focus on the simple
shortest path and ignore the variations of loopless ¢ shortest
paths. The third step is to traverse all the candidate shortest paths
(abbreviated as candidates) in 75;5“) and calculates associated
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Fig. 4. Corrected shortest paths of Gs.
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Fig. 5. Corrected shortest paths of G3.

confidence, (3. Each candidate has a confidence level, which is
determined by multiplying the edge betweenness centrality of
each edge along the path by a cumulative factor. This algorithm
computes all the S and returns the more closer approximate
shortest path collection, 75,’w, which contains the candidates p

with the top |ﬁuv\ highest confidence.

As we described in Section III, edge betweenness centrality
is measured by the number of shortest paths passed through.
Assume e; ;, the edge of vertex ¢ and j,is acomponent of shortest
path p,, .. Intuitively, its betweenness centrality b; ; reflects the
priority of shortest paths passed through e; ;. The shortest paths
prefer e; ; in the local substructure around e; ; with high b; ;
rather than the edge candidates with low betweenness centrality.

We reuse previous examples as shown in Figs. 1,2, and 3. Figs.
4 and 5 demonstrate the corrected shortest paths of G and G3,
respectively. The green fractions represent the edge betweenness
and centrality for each edge. The results of Algorithm 4 are
shown on the right.

We suppose ¢ = 2. First, let us focus on vertex pairs (1,4)
and (2,4). The maximum perturbation has been applied to Go,
and its shortest paths have changed from {1 — 4,1 — 3 — 4}
to {1 — 3 — 4}. According to Algorithm 4, the /3 of the first
shortest path {1 — 3 — 4} is 3/16, but the § of the second
shortest path {1 — 4} is 1/4. As a result, the shortest path of
the vertex pair (1,4) is {1 — 4}. Similarly, the first shortest path
of (2,4) is {2 — 4}, but the edge e2 4 is an external edge that
the edge betweenness centrality b; ; is 0. {2 -1 — 3 — 4}
with 8 = 3/32 is the second-shortest path of (2,4). As a result,
the shortest path of a vertex pair of (2,4) is {2—>1— 3 —
4}. At the same time, the shortest paths between other vertex
pairs remain unchanged. The shortest path for (1,4) changes
from {1 — 3 — 4} to {1 — 4} using the same process. And
the shortest path for (2,4) is {2 — 1 — 4}.

All the shortest paths in Fig. 4 are real shortest paths, and the
change rate has been reduced to 1/4. We can note that the main

TABLE I
PARAMETER SETTING

Parameter Value
t |Puw| + 2
Laplace
€1 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
€ 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
p 2
Lap* + Lap~ ¢ [Pu,ol +
€1 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
€2 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
t 7 2
Lap™ + Lap ‘P“’”l +
€1 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
€ 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
t 7 2
Lap™ + RR ‘,P“”’l +
€1 1,2,3,4,5,6,7,8,9,10
€2 1,2,3,4,5,6,7,8,9,10
TABLE II
DATASETS STATISTICS
Datasets n m weight
EIES 48 830 [1,4]
Alpha 3783 24186 [-10,10]
OTC 5881 35592 [-10,10]

contribution of 3 is to avoid 1 — 4 to be the shortest path. But
in GG3, it seems to make no sense because positive and negative
Laplace noises will not be involved in forming the shortest paths.
Our experiments will show that Algorithm 4 makes sense for
sampling of Laplace noises.

V. EVALUATION

In this section, we evaluate the effectiveness of our proposed
algorithms using three real-world datasets. We use average
shortest path distance (ASPD) and change rates to measure data
utility and use € to measure privacy. In order to demonstrate
the effectiveness of our algorithms, we include two additional
experimental settings. The first setting involves adding Laplace
noise to the global edge weights, while the second setting
involves using Laplace noise to replace the negative noise values.

A. Datasets

There are three real-world datasets: EIES, Alpha and OTC.
Their relevant statistics are described in Table II. n is the number
of nodes, m is the number of edges, weight is the range of edge
weight.

EIES [34] is an EIES network from Freeman at time 2. This is
an acquaintance network, where vertices denote researchers and
edges denote their relationships, which is a directed relationship.
The weights on the edges indicate the degree of intimacy. To con-
form to our pre-defined privacy model, we convert the directed
edges to undirected edges. That s, if there are two edges between
two nodes, we delete these two edges and add an undirected
edge, and the new weight is the average of the two weights in
the deleted edges; otherwise, simply change the directed edges
to undirected edges and keep the weights the same.
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Alpha [35]is adirected, weighted trust network. The nodes are
people who trade Bitcoin on the Bitcoin Alpha platform. Edges
are the trust scores between nodes which are also directed. The
original edge domain is from —10 (total distrust) to +10 (total
trust). Similarly, we follow the same method to convert it to an
undirected graph. Since it has negative weights, to simplify the
shortest path calculation, we use 11 to minus the weight values
of every edge so that its weight belongs to [1,21].

OTC [35] is also a directed weighted trust network, which
is similar to Alpha, but from another platform: Bitcoin OTC.
Therefore, the pre-processing is consistent with Alpha.

B. Parameters Setting

In this paper, we evaluate the utility of graphs by ASPD and
shortest path change rate. We have already mentioned the change
rate in our example. So we briefly introduce the ASPD.

Definition V.1: ASPD refers to the average shortest path
distance of G = (V, E, W), it is defined as follows

n2 —n ]
0<i<|V|
1<j<|V|

§= (16)

where n = |V/| is the number of nodes in G, and d; ; is the
distance between node 7 and j.

As shown in Table I, 75uv| refers to the total number of
candidate shortest paths between u and v. The Laplace means
adding Laplace noises to all weights with the same e val-
ues. Our Algorithm 1 and Algorithm 4 are Lap™ + Lap~ and
Lap™ + RR,respectively. The remaining Lap™ + Laprefers to
adding Laplace noises to edges with non-zero edge betweenness
centrality and adding positive Laplace noises to edges with zero
edge betweenness centrality.

Because of their high sensitivity, the parameters in Table I are
only appropriate for datasets Alpha and OTC. For EIES, €; and
o are all set to {1,2,3,4,5,6,7,8,9,10}.

To reduce the effect of randomness, for EIES, we implement
the above four settings on the entire graph, then repeat 20 times to
obtain the mean value. For Alpha and OTC, because the all-pairs
shortest-path calculation has such a large overhead, we randomly
select 200 nodes and calculate their shortest paths on the entire
graph. Similarly, to reduce the effect of randomness, we repeat
these operations 10 times. Note that since €¢; and e, take the
same value in the experiment, we will not distinguish between
€1 and ¢ later.

C. Utility

Fig. 6 presents the relative ASPD errors for three datasets
across four experimental settings: Laplace, Lap™ + Lap~,
Lap™ + Lap, and Lap™ + RR. Due to significant differences
in weight ranges and dataset sizes between the EIES dataset and
the other two, we calculate the absolute values of the relative
ASPD errors for each dataset to ensure a fair comparison. Each
row of plots shows the results for a single dataset under the four
experimental settings, while each column displays the results
for all three datasets under the same experimental configura-
tion. For simplicity, the pre-ASPD refers to the ASPD error
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TABLE III
AVERAGE IMPROVEMENT OF ASPD
dataset EIES Alpha OTC
Laplace -0.014 0.007 0.006
Lapt + Lap~ -0.033 0.005 0.005
Lapt + Lap -0.025 0.007 0.006
Lap™ + RR 0.020 0.011 0.011

before applying Algorithm 4, whereas post-ASPD represents
the ASPD error after implementing Algorithm 4. To provide a
concise summary of the results, Table III presents the average
improvement between the pre-ASPD and post-ASPD values for
each plot depicted in Fig. 6.

For ASPD relative errors, it can be observed that the overall
trend of all plots is decreasing with increasing e because the
large epsilon means applying a larger magnitude of perturbation
to the dataset. Except for the plots of EIES, other results all
illustrate that the post-ASPD is lower than the pre-ASPD, which
indicates that our Algorithm 4 helps reduce the error of ASPD.
As shown in Table III, the improvement is up to 1.1% in large
graph, Alpha and OTC.

Although the improvement is small, it is important to note
that the main purpose of Algorithm 4 is not to reduce the
ASPD error, but to find more approximate shortest paths.
However, the anomalous results of EIES in Table III, i.e.,
—1.4%, —3.3%, —2.5%, reveal Algorithm 4 is not applicable
to small graph though there is a great improvement which is up
to 10% when € < 4.

Itis worth noting that the overall relative ASPD errors for OTC
and Alpha are generally higher than those for EIES. For instance,
when the lines in most plots stabilize, the pre-ASPD errors
for Alpha and OTC are approximately around 53%, whereas
the errors for EIES are less than 38%. This difference can be
attributed to the longer average shortest path lengths in Alpha
and OTC, which makes them more susceptible to the influence
of noise on distances, as depicted in Fig. 7.

Fig. 7 presents the average shortest path lengths for the
three datasets at different € values (¢ = 1,5, 10). The average
shortest path length for each dataset remains relatively stable,
approximately at 2.7, 6.2, and 7 for EIES, Alpha, and OTC,
respectively. Consequently, Alpha and OTC exhibit higher errors
due to their longer average shortest path lengths.

The Laplace experiment serves as a comparison to Lap™ +
Lap~. Notably, Laplace exhibits lower relative ASPD errors
compared to Lap™ + Lap~, primarily because the positive and
negative noises in Laplace tend to cancel each other out, while
this balancing effect does not occur in Lap™ + Lap~. Similarly,
Lap™ + Lap is a comparable work of Lap™ + RR, and they
demonstrate comparable errors. However, it is worth noting that
the latter is more influenced by Algorithm 4, leading to improve-
ments of up to 2% for EIES and 1.1% for other datasets, as shown
in Table III. One possible explanation for this discrepancy could
be the unbounded nature of Laplace noise, resulting in greater
variance in the weights compared to the original values.

Next, we examine the change rate of shortest paths under
the same settings using Fig. 8 and Table IV. The pre-change
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Fig. 7.  Average shortest path length of selected part.

rate refers to shortest paths change rate before using Algorithm
4, while post-change rate refers to the change rate after using
Algorithm 4.

AVERAGE IMPROVEMENT OF CHANGE RATE

dataset EIES Alpha OTC
Laplace 0.089 0.025 0.016
Lap™ + Lap~ 0.015 0.026 0.028
Lap™ + Lap 0.083 0.026 0.016
Lap™ + RR 0.011 0.050 0.037

For small graph EIES, it is obvious that the pre-change rates
of Lap™ + Lap™ and Lap™ + RR are less than 18% and 10%
when € are 10 and 5, respectively. Meanwhile, the pre-change
rate of other two cases are large than 20% in the same setting
which shows Lap™ + Lap~ and Lap™ + RR help to reduce
the change rate for small graph. And for Alpha and OTC, the
pre-change rates of Lap™ + Lap™ are less than 55% and 63%,
which are obviously lower than other two cases, respectively.
Furthermore, the post-change rates of the approximate shortest
paths corrected by Algorithm 4 have all improved which is even
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Fig. 8.  Shortest paths change rate.
up to 8.3% in Table IV. Thus, Algorithm 4 helps find more
approximate shortest paths for both large and small graphs.
When comparing Lap™ + Lap~ to Laplace, it is evident
that Lap™ + Lap~ exhibits a lower change rate across all three
datasets at the same e setting. As presented in Table IV, the
improvement offered by Lap™ + Lap~ is more pronounced
in the large graph, Alpha, and OTC datasets, but not in the
case of EIES. One apparent reason for this observation is that
Lap™ + Lap™ already achieves a low change rate in the small
EIES graph. This phenomenon is similar for both Lap™ + Lap™
and Lap™ + RR, where the latter experiences an even lower
change rate in the small EIES graph, resulting in suboptimal
performance for Algorithm 4.

VI. DISCUSSION

In this section, we will discuss the limitation and potential
threats to internal, external, statistical, and construct validity.

A. Limitation

While our proposed mechanisms effectively preserve privacy,
they do introduce changes in at least half of the shortest paths

10 20 30 40 50 2 4 6 8 10

for large graphs, resulting in a significant impact on utility. For
instance, as illustrated in Fig. 8, even when the pre-change rate
and post-change rate tend to stabilize, their values remain above
50%. Such relatively high values may limit the applicability of
our algorithms in scenarios where higher precision is required.

This limitation arises from the larger scale of noise introduced
due to our stringent privacy requirements. It is crucial to rec-
ognize the inherent trade-off between privacy and utility. While
reducing our privacy requirements and fine-tuning the difference
between adjacent graphs to 1 can significantly decrease the
magnitude of noise and enhance utility, it would ultimately
compromise our primary objective of enhancing the level of
privacy-preserving.

B. Threat

The potential threats to the internal validity could be the
setting of ¢ and e. ¢ directly determines the search scope of
Algorithm 4 that means too small ¢ will cause the true shortest
path out of scope while large ¢ will introduce more irrelevant
paths. Intuitively, we choose to set ¢ to |?3uv| + 2 which will
search for up to two more shortest paths in our experiments. This
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is a conservative setting that there should be more thoughtful
consideration to improve experimental results. And € has a direct
impact on privacy and errors. Therefore, we defined different e
depending on the sensitivity of the input graph and perturbation
method. For graph EIES with sensitivity 3 and perturbation
method RR, we set € to a small range [1,10]. And for other
two graphs and other three perturbation methods, we set € to
a large range [10,55] where the increase step is 5. Finally, €;
and e, are applied to different parts of the graphs, and they are
set to the same values for clearly facilitating the presentation of
the experimental results. Therefore, differentiated settings for €,
and e may lead to worse or better results.

The main threat to external validity should be the assumption
in Algorithm 4 that the shortest paths between any two vertices
can be multiple. For large and complex graph such as Alpha and
OTC, it is common for most vertices to have multiple shortest
paths. And for graphs smaller and simpler than EIES, only a
small number of multiple shortest paths may exist. Therefore, it
may be challenging to generalize this assumption to all graphs.
The other threat is the datasets. But because we are using real
datasets and the size of the datasets are different, the good results
reduce the danger of that threat to some extent.

For the threats to statistical validity, there are the randomness
of Laplace noise and graph. We adopt the strategy of repeating
the experiment to take the average value to reduce the effect of
randomness of Laplace noise. The latter threat refers to the fact
that we can only select some vertices on the Alpha and OTC
to compute the all-pair shortest paths due to the limitation of
computational resources. Although we reduce the contingency
by repeatedly selecting randomly, this threat still exists.

Finally, the accuracy of Laplace noise poses a significant
threat to the construct validity. In theory, Laplace noise should
be a continuous value. However, computers can only handle
discrete values, which requires us to round the noises to a certain
number of decimal places. This rounding may introduce privacy
risks and affect the accuracy of the noise. Therefore, the accuracy
of the Laplace noise should be carefully considered to ensure the
validity of the results.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose differentially private algorithms for
privately publishing all-pairs shortest paths in weight-sensitive
graphs with low errors. Due to the complexity of edge struc-
tures, perturbations on edges can cause significant distortion
of shortest paths. Therefore, we divide edges into internal and
external edges based on edge betweenness centrality and add
positive and negative noise separately. To avoid unnecessary
rounding, we implement randomized response on internal edges.
Furthermore, we propose Algorithm 4 to find shorter paths closer
to the real ones from approximate shortest paths. This algorithm
uses cumulative multiplication of edge betweenness centrality
to select the better shortest paths.

Compared with adding global Laplace noise, the two pertur-
bations we propose can effectively reduce the change rate of
the shortest paths for both large and small graph. Additionally,
Algorithm 4 can significantly improve the change rate, reducing

it by 8.3% compared to the original value. While our proposed
methods do not directly reduce the error of ASPD, Algorithm 4
can still help to reduce the change rate of large graphs by 1.1%
compared to the original values.

Therefore, our proposed approach of dividing edges into
internal and external based on edge betweenness centrality
and adding noise separately can provide a better balance be-
tween privacy and accuracy when publishing all-pairs shortest
paths and distances in weight-sensitive graphs. Furthermore,
Algorithm 4 can effectively reconstruct the true shortest paths
from approximate ones and reduce the error in large graphs,
which highlights the importance of considering the edge struc-
ture when designing differentially private algorithms for graph
data.

Given our acknowledged limitations, our future research di-
rections encompass several key areas. One significant avenue
is the development of an online differential privacy mecha-
nism for answering shortest path queries using the exponential
mechanism, which offers better control over privacy. In this
context, we can circumvent the need to introduce noise to all
weights, thereby minimizing the degradation of utility. Another
promising direction involves the publication of shortest paths
in decentralized graphs with reduced errors. In social networks,
users are often hesitant to share edge weights related to sensitive
data with third parties, necessitating the perturbation of sensitive
weights before sharing. However, this approach may limit our
ability to use edge betweenness centrality for edge classification
and to identify closer approximate shortest paths. Consequently,
we must explore alternative methods to enhance utility in such
scenarios. Lastly, it is imperative to address the potential privacy
vulnerabilities posed by the threats we have identified. Ensuring
robust privacy protection remains a paramount concern in our
future endeavors.
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